PIC2550 Clockcheck: Unterschied zwischen den Versionen
Wezi (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung |
Wezi (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung |
||
(3 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
Ein PIC 2550 soll mit 48MHz Taktfrequenz betrieben werden. Es wird ein 20MHz Quarzoszillator mit PLL verwendet. Als Programmierumgebung wird MPLAB X IDE mit XC8 C-Compiler eingesetzt. Folgende Konfiguration wird verwendet: | Ein PIC 2550 soll mit 48MHz Taktfrequenz betrieben werden. Es wird ein 20MHz Quarzoszillator mit PLL verwendet. Als Programmierumgebung wird MPLAB X IDE mit XC8 C-Compiler eingesetzt. | ||
Folgende Konfiguration wird verwendet: | |||
<syntaxhighlight lang="MPASM" line start="100" enclose="div"> | |||
// PIC18F2550 Configuration Bit Settings | // PIC18F2550 Configuration Bit Settings | ||
Zeile 71: | Zeile 75: | ||
// CONFIG7H | // CONFIG7H | ||
#pragma config EBTRB = OFF // Boot Block Table Read Protection bit (Boot block (000000-0007FFh) is not protected from table reads executed in other blocks) | #pragma config EBTRB = OFF // Boot Block Table Read Protection bit (Boot block (000000-0007FFh) is not protected from table reads executed in other blocks) | ||
</ | |||
</syntaxhighlight > | |||
zum testen wird ein kurzes Testprogramm mit zyklischer Umschaltung PORTB Bit0 genutzt: | zum testen wird ein kurzes Testprogramm mit zyklischer Umschaltung PORTB Bit0 genutzt: | ||
<syntaxhighlight lang="C" line start="100" enclose="div"> | |||
< | |||
void main(void) | void main(void) | ||
{ | { | ||
Zeile 86: | Zeile 91: | ||
} | } | ||
} | } | ||
</ | </syntaxhighlight> | ||
daraus entsteht folgender Assemblercode | daraus entsteht folgender Assemblercode | ||
< | |||
<syntaxhighlight lang="MPASM" line start="100" enclose="div"> | |||
!void main(void) | !void main(void) | ||
!{ | !{ | ||
Zeile 107: | Zeile 113: | ||
0x7CFC: MOVWF LATB, ACCESS // 1 Cy | 0x7CFC: MOVWF LATB, ACCESS // 1 Cy | ||
0x7CFE: BRA 0x7CF6 // 2 CY | 0x7CFE: BRA 0x7CF6 // 2 CY | ||
</ | </syntaxhighlight> | ||
ein am entsprechenden Pin angeschlossenes MSO zeigt nun folgendes: | ein am entsprechenden Pin angeschlossenes MSO zeigt nun folgendes: | ||
Zeile 113: | Zeile 119: | ||
[[Datei:PORTB_0.png]] | [[Datei:PORTB_0.png]] | ||
==== Fazit ==== | |||
48 MHz Taktfrequenz bedeutet eine Zyklusfrequenz Takt /4 ==> 12 MHz, die Programmschleife besteht aus 6 | Was ist daraus zu erkennen?! | ||
12 MHz Zyklusfrequenz ergibt eine | 48 MHz Taktfrequenz bedeutet eine Zyklusfrequenz Takt /4 ==> 12 MHz, die Programmschleife besteht aus 6 Zyklen was 24 Taktzyklen entspricht. | ||
Die Low-Zeit ergibt sich aus 2 Cy die High-Zeit sind die restlichen 4 Cy. Die Periodendauer ist somit 6*83,3ns = 499,999ns was wiederum einer Frequenz von 2MHz entspricht. | 12 MHz Zyklusfrequenz ergibt eine Zykluszeit von 1/12MHZ = 83,33 ns (Ausführung eines 1 Zyklusbefehls dauert 83,3ns). | ||
Da diese Werte messtechnisch nachgewiesen wurden scheint die | Die Low-Zeit ergibt sich aus 2 Cy die High-Zeit sind die restlichen 4 Cy. Die Periodendauer ist somit 6*83,3ns = 499,999ns was wiederum einer Frequenz von 2MHz entspricht. | ||
Da diese Werte messtechnisch nachgewiesen wurden scheint die Konfiguration erfolgreich durchgeführt worden zu sein. |
Aktuelle Version vom 8. Januar 2015, 20:29 Uhr
Ein PIC 2550 soll mit 48MHz Taktfrequenz betrieben werden. Es wird ein 20MHz Quarzoszillator mit PLL verwendet. Als Programmierumgebung wird MPLAB X IDE mit XC8 C-Compiler eingesetzt.
Folgende Konfiguration wird verwendet:
<syntaxhighlight lang="MPASM" line start="100" enclose="div">
// PIC18F2550 Configuration Bit Settings
// 'C' source line config statements
- include <xc.h>
// #pragma config statements should precede project file includes. // Use project enums instead of #define for ON and OFF.
// CONFIG1L
- pragma config PLLDIV = 5 // PLL Prescaler Selection bits (Divide by 5 (20 MHz oscillator input))
- pragma config CPUDIV = OSC1_PLL2// System Clock Postscaler Selection bits ([Primary Oscillator Src: /1][96 MHz PLL Src: /2])
- pragma config USBDIV = 1 // USB Clock Selection bit (used in Full-Speed USB mode only; UCFG:FSEN = 1) (USB clock source comes directly from the primary oscillator block with no postscale)
// CONFIG1H
- pragma config FOSC = HSPLL_HS // Oscillator Selection bits (HS oscillator, PLL enabled (HSPLL))
- pragma config FCMEN = OFF // Fail-Safe Clock Monitor Enable bit (Fail-Safe Clock Monitor disabled)
- pragma config IESO = OFF // Internal/External Oscillator Switchover bit (Oscillator Switchover mode disabled)
// CONFIG2L
- pragma config PWRT = ON // Power-up Timer Enable bit (PWRT enabled)
- pragma config BOR = OFF // Brown-out Reset Enable bits (Brown-out Reset disabled in hardware and software)
- pragma config BORV = 3 // Brown-out Reset Voltage bits (Minimum setting)
- pragma config VREGEN = OFF // USB Voltage Regulator Enable bit (USB voltage regulator disabled)
// CONFIG2H
- pragma config WDT = OFF // Watchdog Timer Enable bit (WDT disabled (control is placed on the SWDTEN bit))
- pragma config WDTPS = 32768 // Watchdog Timer Postscale Select bits (1:32768)
// CONFIG3H
- pragma config CCP2MX = ON // CCP2 MUX bit (CCP2 input/output is multiplexed with RC1)
- pragma config PBADEN = OFF // PORTB A/D Enable bit (PORTB<4:0> pins are configured as digital I/O on Reset)
- pragma config LPT1OSC = OFF // Low-Power Timer 1 Oscillator Enable bit (Timer1 configured for higher power operation)
- pragma config MCLRE = ON // MCLR Pin Enable bit (MCLR pin enabled; RE3 input pin disabled)
// CONFIG4L
- pragma config STVREN = ON // Stack Full/Underflow Reset Enable bit (Stack full/underflow will cause Reset)
- pragma config LVP = OFF // Single-Supply ICSP Enable bit (Single-Supply ICSP disabled)
- pragma config XINST = OFF // Extended Instruction Set Enable bit (Instruction set extension and Indexed Addressing mode disabled (Legacy mode))
// CONFIG5L
- pragma config CP0 = OFF // Code Protection bit (Block 0 (000800-001FFFh) is not code-protected)
- pragma config CP1 = OFF // Code Protection bit (Block 1 (002000-003FFFh) is not code-protected)
- pragma config CP2 = OFF // Code Protection bit (Block 2 (004000-005FFFh) is not code-protected)
- pragma config CP3 = OFF // Code Protection bit (Block 3 (006000-007FFFh) is not code-protected)
// CONFIG5H
- pragma config CPB = OFF // Boot Block Code Protection bit (Boot block (000000-0007FFh) is not code-protected)
- pragma config CPD = OFF // Data EEPROM Code Protection bit (Data EEPROM is not code-protected)
// CONFIG6L
- pragma config WRT0 = OFF // Write Protection bit (Block 0 (000800-001FFFh) is not write-protected)
- pragma config WRT1 = OFF // Write Protection bit (Block 1 (002000-003FFFh) is not write-protected)
- pragma config WRT2 = OFF // Write Protection bit (Block 2 (004000-005FFFh) is not write-protected)
- pragma config WRT3 = OFF // Write Protection bit (Block 3 (006000-007FFFh) is not write-protected)
// CONFIG6H
- pragma config WRTC = OFF // Configuration Register Write Protection bit (Configuration registers (300000-3000FFh) are not write-protected)
- pragma config WRTB = OFF // Boot Block Write Protection bit (Boot block (000000-0007FFh) is not write-protected)
- pragma config WRTD = OFF // Data EEPROM Write Protection bit (Data EEPROM is not write-protected)
// CONFIG7L
- pragma config EBTR0 = OFF // Table Read Protection bit (Block 0 (000800-001FFFh) is not protected from table reads executed in other blocks)
- pragma config EBTR1 = OFF // Table Read Protection bit (Block 1 (002000-003FFFh) is not protected from table reads executed in other blocks)
- pragma config EBTR2 = OFF // Table Read Protection bit (Block 2 (004000-005FFFh) is not protected from table reads executed in other blocks)
- pragma config EBTR3 = OFF // Table Read Protection bit (Block 3 (006000-007FFFh) is not protected from table reads executed in other blocks)
// CONFIG7H
- pragma config EBTRB = OFF // Boot Block Table Read Protection bit (Boot block (000000-0007FFh) is not protected from table reads executed in other blocks)
</syntaxhighlight >
zum testen wird ein kurzes Testprogramm mit zyklischer Umschaltung PORTB Bit0 genutzt: <syntaxhighlight lang="C" line start="100" enclose="div"> void main(void) {
ConfigureOscillator(); portd_output; // PortB pins Output
while(1) { LATB = 0b00000000; LATB = 0b00000001; }
} </syntaxhighlight>
daraus entsteht folgender Assemblercode
<syntaxhighlight lang="MPASM" line start="100" enclose="div"> !void main(void) !{ ! ConfigureOscillator(); 0x7CEE: CALL 0x7CE2, 0 0x7CF0: NOP ! portd_output; // PortB pins Output 0x7CF2: MOVLW 0x0 0x7CF4: MOVWF TRISB, ACCESS ! while(1) ! { ! LATB = 0b00000000; 0x7CF6: MOVLW 0x0 // 1 Cy 0x7CF8: MOVWF LATB, ACCESS // 1 Cy ! LATB = 0b00000001; 0x7CFA: MOVLW 0x1 // 1 Cy 0x7CFC: MOVWF LATB, ACCESS // 1 Cy 0x7CFE: BRA 0x7CF6 // 2 CY </syntaxhighlight>
ein am entsprechenden Pin angeschlossenes MSO zeigt nun folgendes:
Fazit
Was ist daraus zu erkennen?!
48 MHz Taktfrequenz bedeutet eine Zyklusfrequenz Takt /4 ==> 12 MHz, die Programmschleife besteht aus 6 Zyklen was 24 Taktzyklen entspricht. 12 MHz Zyklusfrequenz ergibt eine Zykluszeit von 1/12MHZ = 83,33 ns (Ausführung eines 1 Zyklusbefehls dauert 83,3ns). Die Low-Zeit ergibt sich aus 2 Cy die High-Zeit sind die restlichen 4 Cy. Die Periodendauer ist somit 6*83,3ns = 499,999ns was wiederum einer Frequenz von 2MHz entspricht. Da diese Werte messtechnisch nachgewiesen wurden scheint die Konfiguration erfolgreich durchgeführt worden zu sein.